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Design of Microwave Filters by Sine-Plane Approach

KHEE K. PANG

Abstract—Using a new sine-plane approach [7], an easy-to-use
design procedure for microwave filters is developed. The design
formulas are very simple (Tables I~III) and are valid for filters of
wide bandwidths (Section V). Furthermore, the new design offers
many advantages over other presently available designs.

I. INTRODUCTION

ICROWAVE filters can be designed using two dif-
M ferent approaches. They can be designed by approxi-

mation equations [1]-[3], and they can be designed
by exact synthesis methods [4], [5]. Both approaches have
their own merits. Explicit formulas are given in Cohn [1],
Matthaei [2], and Cristal [3]; their design procedures are
therefore easy to use. The design method presented by
Wenzel [4] and Mumford [5] is exact, but this is achieved at
the expense of greater numerical complexity.

With reference to the first approach, i.e., designing filters
by approximation equations, Dishal [6] raised the following
question: Why should one waste the space to put in rods #0
and #(n-+1), the only purpose of which is to properly couple
the resistive generator and resistive load to the input-output
resonances, respectively? This question has not been answered
satisfactorily for parallel-coupled filters of wide bandwidths.

Using the new sine-plane approach presented in the com-
panion paper [7], a new set of design equations will be derived
in this paper. Apart from dissolving the objection raised
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Fig. 1. Basic bandpass networks.

above, the new design equations offer other advantages.
These are discussed in the text of the paper.

II. THEORY

The theory derives mainly from the graphical transforma-
tion technique described in [7]. Through a series of trans-
formations, it will be shown that microwave bandpass filter
networks can be identified with lumped prototype filters of
standard designs.

Consider the two basic bandpass filter structures in Fig. 1.1
They are shown in Richards’ A-plane presentation,? and thus
implicitly assumed that the networks consist of open-circuit
stubs, short-circuit stubs, and unit transmission lines, all of
which have the same electrical length. Note that all connect-

1 It can be shown that the interdigital filter and parallel-coupled filter
are equivalent to one of the two network structures.

2 \=tanh 7p, where 7 is the time taken for a pulse to traverse the unit
length of transmission line, and p=o0-+jw is the complex frecuency.
Later, s and ¢ will be used to denote sinh 7p and cosh 7p, respectively.
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low-pass prototype filter.

ing elements are identical. This would not restrict the general-
ity of filter characteristics, as will be clear later.

Fig. 2 shows the “low-pass” equivalent of the network in
Fig. 1(a). These two equivalent networks have identical fre-
quency characteristics, but are displaced from one another by
an amount fp along the frequency axis, where fo=1/47 is the
quarter wavelength frequency. The low-pass equivalent can
be derived either by the procedure described in Cristal [8], or
in Kuroda [9]. The other low-pass equivalent of the network
in Fig. 1(b) is a dual network of that in Fig. 2. Therefore, it
will be omitted here for brevity.

The network in Fig. 2 is next presented in an s-plane
equivalent form. Using the procedure described in Section IV
of [7], the lumped network of Fig. 3 is obtained. Note that
the +/c-transformer created in the process is eliminated by
showing the two terminating resistors, v 1+s and v/1+52/G
(or Zo®G/+/1+4s%) as frequency-dependent resistors.

Except for these terminating resistors, the s-plane equiva-
lent is identical to a lumped ladder network shown in Fig. 4
in every other respect. Let us disregard the terminations for
the moment and equate the element values of the two lossless
two-ports. The results are listed in Table I. Using the lumped
prototype filter as the basis, Table I enables us to derive the
element values of the corresponding microwave bandpass
filter. It will be shown later that the bandpass filter has nearly
the identical frequency characteristic as its lumped prototype
filter.

I1I. MisMATCH AT TERMINATIONS

In the s-plane presentation of Fig. 3, the two frequency-
dependent resistors at the terminations are similar to the
image impedance of a k-section in the classical image-param-
eter filter design, except for one important distinction. The
classical image impedance is resistive in the passband, and
becomes reactive in the stopband; whereas the +/1+s? re-
sistor remains resistive throughout the entire frequency range.

TABLE I

DESIGN EQUATIONS FOR SHUNT SHORT-CIRCUITED
Stus FILTERS oF FIG. 1(a)

Nomenclature

n  Number of shunt stubs.

w Fractional bandwidth.

g; FElement values of prototype network.

G Terminating conductance [see Fig. 1(a)].__

% Scaling factor. Recommended value’s=+/co [see (3) ].

s¢ =sin (wr/4).
co =cos (wr/4).
For # even

Connecting elements
Yo=~/Ggns1/k

End stubs
Yi=g1/(hso)— Yo
Yi=hg.Yo?/so— Yo

Intermediate stubs

V,=g:;/(hs)) —2Y,y, fori=3,5---,n—1
Yi=hgY?/so—2Yo, fori=2,4,---,n—2
For n odd
Connecting elements
Yy arbitrary, G=1/gn1
End stubs
Yi=g1/(hso)—Yo
Yi=2gn/(hse) — Yo
Intermediate stubs
Vi=gi/(hs)) —2Vo, fori=3,5-++,n—2

Y¢=hg1Y02/So—2Yo, fori=2, 4, e ,11—1

If we consider the low-pass prototype filter in Fig. 4 as a
lossless two-port N “matched” at both terminations, then the
low-pass equivalent in Fig. 3 can be regarded as the same
filter network N having mismatched terminations. Like the
classical image-parameter filter, it is these frequency-depen-
dent resistors that distort its predicted frequency charac-
teristics.

If the v/1+Fs? resistor has a dominant value of % over the
frequency range of interest,® the reflection caused by the
slight mismatch should be small enough to have no appre-
ciable effect on the overall frequency characteristic. The low-
pass network in Fig. 3 and the prototype filter in Fig. 4 should
then have the same frequency characteristic. At frequency
when the v/1} s resistor is exactly equal to %, i.e., when

V14 s2=cosTw =10 (1)
the microwave filter is matched at both terminations, and a
perfect matching is said to have been established.

IV. OpTiMUM IMPEDANCE LEVEL %

As the impedance level % of the prototype network can be
varied or arbitrary without affecting its frequency responses,
the perfect matching condition can be established at any set
frequency. ’

If we were to set A=1, perfect matching would occur at
the center of the passband. The design would then be similar
to Cohn’s [1] in this respect. If we were to set k=c, perfect
matching would occur ot the edges of the passband and the
design would then be similar to Cristal’s [3].

Instead, a different value of # will be chosen to the “best”
advantage. In the following, the criterion of the Chebyshev

3 This normally includes the passband and its vicinity.
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filter will be invoked and the value of % chosen to give a
minimum passband ripple. /

Let us first assume that the terminating resistors are fre-
quency independent, the Product Theorem* [14] yields the
following result

A? [/H\?
[

where 7 denotes the maximum VSWR of the microwave filter
in the passband.

7p denotes the maximum VSWR of the prototype network
in the passband and maXe <egt [(¢/k), (B/c)] represents the
VSWR of the mismatches at the terminations over the pass-
band.

Minimizing » with respect to % in (2), we obtain

h=+/co 3

which corresponds to a maximum VSWR of 7,/ce. This value
of VSWR can only be reached at the center and at the edges
of the passband, where maximum mismatch occurs.

)

4 Strictly speaking, the Product Theorem as given in [14] is not appli-
cable to the present problem. However, the result in (2) can be proven
readily by an optimization procedure [11}, {15]. Also, (3) is not a true
optimum solution as the assumption that the terminating resistors are
frequency independent is not true. However, as the relaxation of any
constraint relationship can only produce a higher value of » in the
optimization process, (4) is still valid.
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Fig. 7. Computed filter response. The filter is designed from the proto-

type network with #=7, w=0.7, and bandpass ripple 0.25 dB
(VSWR =1.62).

For even-order {n even) filters, it can be shown that the
choice of  in (3) will yield a maximum VSWR of r,/¢y at the
center of the passband (see Fig. 6). For odd-order filters, how-
ever, this value may not be reached (see Fig. 5). We can
therefore write

7 < 1p/co, for 4 = +/cq.

4)

V. AMPLITUDE RESPONSE OF THE FILTERS

Once the value of % is chosen, the filter network as defined
in Table I is completely specified. The remaining task then
is to assess how good the new design equation is. For this
purpose, the amplitude characteristics of the new filters are
compared against Cristal’s in Figs. 5 and 6 for typical cases of
n odd and # even. Among the approximation design equations
presently available, Cristal’s equations appear to give the best
approximation characteristics [3].

Fig. 5 shows that the new filter has a lower VSWR than
that of Cristal’s. Fig. 6, on the other hand, shows that the new
filter has a higher VSWR. All in all;? it was found that the
degree of approximation offered by the two different methods
is about equal.

In Fig. 7, the new filter response is compared against the
prototype filter response. The impedance scaling factor % is
set at one, thus creating a maximum number of possible mis-
matches at the edges of the passband. The fractional band-
width is set to 70 percent, which is more than an octave band-
width. Under this adverse condition, the new filter still closely
follows the ripple characteristic of its prototype network.

VI. EXPERIMENTAL EXAMPLE

To illustrate the design procedure, a 7-stub bandpass
filter of 70-percent fractional bandwidth will be designed step
by step as follows.

& When evaluating the frequency response of a Chebyshev filter, the
selectivity in the stopband must also be taken into consideration. In the
two examples shown here, the steepest slopes (in dB/degree) of the new
filters in the topband are both slightly higher than those of the corre-
sponding Cristal’s filters.
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Photograph of the 70-percent fractional bandwidth
filter with cover plate removed.

Fig. 8.
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Fig. 9. Measured filter response.

Assume that the design calls for a Chebyshev prototype
filter of 1/4-dB (VSWR =1.62) ripple in the bandpass and
that . is to be chosen as 1.5 This will resfilt in a maximum
ripple height of 0.325 dB (VSWR =1.74) in the actual band-
pass filter response, as was indicated in the computed charac-
teristic curves of Fig. 7. ,

Table I indicates that the choice of Yy is arbitrary. In
order to reduce the spread in element values, this added de-
gree of freedom is utilized to set Vo= V3= V5=V, which re-
sults in YoZ=gy/g,.

The above specifications produce the following prototype
element values [13].

&1 = g1 = 14468 g2 = g6 =
2.3476 g

1.3560
1.4689.

Il
1l

g3 = &5

When substituting into the formulas in Table I, these values
in turn yield the following set of normalized element values
for the stub filter.

Yo =1.3158

Y=Y, = 14533
Vo=YV;=Vs=Y,= 18614
Y, = 2.2356.

¢ j should have been chosen to be 4/cos 31.5°. The experimental work
was done before the author realized that the impedance level can be
adjusted to a better advantage.
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Fig. 10. (a) Interdigital filter. (b) Parallel-coupled half-wave

short-circuited resonator filter.

TABLE 11
DESIGN EQUATIONS FOR INTERDIGITAL FILTERS SHOWN IN FIG. 10(a)

Nomenclature
See Fig. 10(a) and Table I

Mutual capacitances (normalized. to 771, where v is the velocity of
propagation). All mutual capacitances are identical, i.e., Ciiy1=Cl,
i=1,2,3,--,n—1

If # even, Co=+/Gens1/h

If #n odd, Cgarbitrary and G=1/gn11

Self-capacitances?® (normalized to v™%)

Cii =g/ (hso), i=1,305-"",n
w=hCo’gi/ 0, 1=2,4,6,--,n

2 The running index ¢ terminates either at # or at #—1, the integer
before it.

TABLE III

DESIGN EQUATIONS FOR PARALLEL-COUPLED HALF-WAVE SHORT-
CIRCUITED RESONATOR FILTER As SHOWN IN FiG. 10(b)

Nomenclature

See Fig. 10(b) and Table I )
Mutual admittances. All mutual admittances are identical, i.e., V¥,
=Yo,i=1,2,3,-°,n—1

If # even, Yo=~/Genp1/h

If # odd, Y arbitrary and G=1/gn.1
Self-admittance?

DY+ DYy =gi/ (hso) i=1,3,5-++,n

OY 11+ DY 9 =h¥%:/50 i=2,4,6,- -, n
where (0¥ =¥ ;=0 for the end sections
For intermediate sections -

DF 3 =EDYy, (6=2,3,4,- - -, n—1) is recommended ..

& The running index ¢ terminates either at # or at »—1, the integer
before it. :

Fig. 8 shows the realization of this filter in slabline form.
The center piece is a continuous bar of rectangular cross sec-
tion. The shunt stubs are of circular cross section. Their num-’
bers are doubled to reduce junction size and also to provide
mechanical rigidity.

The passband VSWR and stopband attenuation charac-
teristic of this filter were measured and the results depicted in
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Fig. 9. With the exception of one smaller ripple and slower
rate of cutoff at 3 GHz-30-dB region, the experimental re-
sult is in very close agreement with the theoretical prediction
shown in Fig. 7.

VII. CoupLED FILTERS

The design equations of Table I can be modified to include
coupled filters such as those shown in Fig. 10. This can be done
readily by the graphical transformation technique [12], and
the results are presented in Tables IT and III.

VIII. CoNcLUSION

The design formulas presented in Tables I-III have the
following advantages over other existing approximate design
formulas.

1) The new design formulas are simpler.

2) Two fewer sections are required for the parallel-coupled
filters.

3) The identical coupling parameters (Yp) in the filter
structure may offer some mechanical advantages in the physi-
cal realization of the filter.

4) The worst VSWR of the filter in the passband can be
predicted (4) and precorrected if necessary.

The comparative ease with which these new design equa-
tions were derived also demonstrated the effectiveness of the
new approach presented in the companion paper [7].
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Design of Acoustic Surface-Wave Devices Using

an Admittance Formalism

ALAN S. BURGESS axp PETER H. COLE

Abstract—The advantages of an admittance formalism for the
derivation of performance characteristics of transversal filters and
one-port information stores using acoustic surface-wave delay lines
are described. An expression for the transadmittance between trans-
ducer pairs in the weak-coupling approximation is derived using a
normal mode theory. The formulation is found to give good agree-
ment with measurements of the passband response of a wide-band
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logarithmically frequency-tapered transducer pair on YX-quartz
A brief discussion of the limitations of the model is included.

I. INTRODUCTION
THE ART of signal processing by means of acoustic

surface-wave devices depends in large measure on the
exploitation of the characteristics of multitapped delay
lines in the synthesis of two-port transversal filters. Multitap
delay lines in which all the transducers are connected in paral-
lel to form a one-port device also find application in the field
of information storage and encoding in that they are one-port



